
A Denotational Engineering

of Programming Languages
…

Part 1: MetaSoft, CPO's and McCarthy's propositional calculus

(Sections 2.1 – 2.9 of the book)

Andrzej Jacek Blikle

March 8th, 2021

"Denotational Engineering of Programming Languages” by Andrzej Blikle is licensed under a Creative Commons:

Attribution — NonCommercial — NoDerivatives.

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 2

MetaSoft
A definitional metalanguage for

denotational definitions of

programming languages

Developed in

Institute of Computer Science

Polish Academy of Sciences

in the years 1970 - 1980

MetaSoft notation ― functions

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 3

a : A (a !: A) ― a is (is not) an element of A

{a1,…,an} ― a finite set

{ } ― an empty set

f.a ― f(a),

f.a.b.c = ((f(a))(b))(c) ― (Haskell) Curry's notation

f.a = !, f.a = ? ― f is defined/undefined for a

(f●g).a = g.(f.a) ― sequential composition of functions

f = [a1/b1,…,an/bn] ― mapping: f.ai = bi and undefined otherwise

[] ― empty function

[A].a = a if a : A ― identity function; where A is a set

f : A → A ― a (possibly partial) function from A to A

f0 = [A] ― 0-th iteration

fn = fn-1 ● f ― n-th iteration

MetaSoft notation ― functions (cont.)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 4

f : A → B, g : C → D

f⧫g : A|C → B|D ― f overwritten by g

(f⧫g).x =

g.x = ! ➔ g.x if g.x defined then g.x

g.x = ? ➔ f.x if g.x undefined then f.x

f⧫g = f | g ― if f ∩ g = { }

f[a1/b1,…,an/bn] ― f overwritten by a mapping [a1/b1,…,an/bn]

f[a1/b1,…,an/bn].x =

x = a1 ➔ b1 if x = a1 then, f.x = b1, and otherwise

…

x = an ➔ bn if x = an then, f.x = bn, and otherwise

true ➔ f.x in all other cases f.x

MetaSoft notation: sets (domains)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 5

{a1,…,an}, { } ― a finite set, an empty set

Sub.A, FinSub.A ― families of all (all finite) subsets of A,

A | B ― union of A and B,

A x B ― Cartesian product of A and B,

Ac+ ― all finite (nonempty) tuples (a1,…,an); ai : A

() ― empty tuple

Ac* = Ac+ | {()} ― all finite (possibly empty) tuples on A

A → B ― all partial functions from A to B

A⟼ B ― all total function from A to B

A⟹ B ― all mappings (finite functions) from A to B

Rel(A,B) = {rel | rel ⊆ A x B} ― binary relations

typical domain equations:

val : Value = Data x Type

vat : Valuation = Identifier ⟹ Value

vat – a metavariable running over Valuation

Cartesian

power

Chain-complete partially ordered sets

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 6

⊑ : Rel(A,A) = {R | R ⊆ A x A} ordering relation in A

DEF. partial order:

a ⊑ a reflexivity

if a ⊑ b and b ⊑ c then a ⊑ c transitivity

if a ⊑ b and b ⊑ a then a = b weak antisymmetricity

b : B is called the least element in B ⊆ A if (∀ b' : B) b ⊑ b'

a : A is called the upper bound of B ⊆ A, if (∀ b : B) b ⊑ a

a1 ⊑ a2 ⊑ a3 ⊑ … a chain

lim(ai | i = 1,2,…) limit = least upper bound (if exists)

Def. (A, ⊑, Φ) is called chain-complete partially ordered set (CPO) if:

1. every chain in A has a limit,

2. Φ is the least element of A

Continuous functions in CPO's

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 7

(A, ⊑, Φ) ― CPO

DEF f : A ⟼ A is continuous if

1. if a1 ⊑ a2 ⊑ … then f.a1 ⊑ f.a2 ⊑… ,

2. if a1 ⊑ a2 ⊑ … has a limit then f.a1 ⊑ f.a2 ⊑ … has a limit,

3. lim(f.a1 ⊑ f.a2 ⊑ …) = f.[lim(a1 ⊑ a2 ⊑…)].

Kleene's fixed-point theorem

If f : A ⟼ A is continuous, then the least solution of

x = f.x

exists and equals lim(fn.Φ | n = 0,1,2,…).

A fundament for recursive definitions of

function and domains

A composition of continuous functions is continuous.

DEF A set-theoretic CPO ― A CPO of sets with ordering by inclusion and

the empty set { } as the least element. E.g. the Sub.A.

A fixed-point definition of 2n

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 8

Nat = {0,1,2,…} ― natural numbers

(Nat → Nat, ⊆, []) ― a set-theoretic CPO of partial functions on Nat

f ● g ― continuous on both arguments

f ⧫ g ― continuous on both arguments

power : Number ⟼ Number power.n = 2n

power.n =

n = 0 ➔ 1

n > 0 ➔ 2 * power.(n-1)

power = zero ⧫ (minus ● power) ● double

where

zero.n = [0/1]

minus.n = n-1 for n > 0

minus.0 = ?

double.n = 2 * n

power = lim.([0/1] , [0/1, 1/2] , [0/1, 1/2, 2/4] , …)

the overwriting of disjoint

functions is a union

A traditional recursive

definition

A fixed-point definition

A CPO of formal languages

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 9

A = {a1,…,an} ― an alphabet

Lan(A) = {L | L ⊆ A*} ― the set of all languages over A

(Lan(A), ⊆, { }) ― CPO of formal languages over A

P, Q : Lan(A)

P © Q = {p © q | p : P and q : Q} ― concatenation

P Q = {p q | p : P and q : Q} ― (an alternative notation)

P0 = {ε}

Pn = P P(n-1) for n > 0 ― n-th power

P+ = P1 | P2 | … ― plus-power

P* = P+ | P0 ― star-power

Pc* = {(p1,…,pn) | n ≥ 0 and pi : P} ― Cartesian power

All function defined above, and union, are continuous

Associativity and distributivity

(P Q) L = P (Q L) will be written P Q L

(P | Q) L = (P L) | (Q L) will be written PL | QL

Equational grammars
(example)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 10

car : Character = {a,…,z,0,…,9}

ide : Identifier = Character | Character © Identifier

exp : Expression = Identifier | {(} © Expression © {+} © Expression © {)}

Equational (polynomial) grammars are equivalent to Chomsky's

context-free grammars and Backus-Naur grammars

In a compact form
car : Character = {a,…,z,0,…,9} terminal symbols

ide : Identifier = Character+

exp : Expression = Identifier | (Expression + Expression)

polynomial equations

A CPO of binary relations

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 11

(Rel(A,A), ⊆, { }) ― CPO of binary relations

[A] = {(a, a) | a:A} ― identity relations (function)

P, R : Rel(A,A)

P ● R = {(a, c) | (Ǝb:B) (a P b & b R c)} ― composition

R0 = [A]

Rn = R ● Rn-1 for n > 0

R+ = R1 | R2 | …

R* = R+ | R0

All function defined above, and union, are continuous

Associativity and distributivity over union

(P R) Q = P (R Q) will be written P R Q

(P | R) Q = (P Q) | (R Q) will be written P Q | R Q

If P, R – functions, then P ● R – function

A CPO of domains

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 12

A | B ― set-theoretic union

A ∩ B ― set-theoretic intersection

A x B ― Cartesian product

Acn ― Cartesian n-th power

Ac+ ― Cartesian plus-iteration

Ac* ― Cartesian star-iteration

FinSub.A ― the set of all finite subsets

A ⟹ B ― the set of all mappings including the empty mapping

A – B ― set-theoretic difference red indicates non-continuity

Sub.A ― the set of all subsets

A → B ― the set of all functions from A to B

A⟼ B ― the set of all total functions from A to B

Rel.(A,B) ― the set of all relations between A and B

(Domain, ⊆, { }) ― the Cohn's CPO of domains

DEF (M.P. Cohn)

(1) { }, Identifier, Integer, Character, … belong to Domain

(2) Domain is closed under all our domain operations (see below)

(2) Domain is closed under enumerable unions of sets

continuous and

noncontinuous

domain constructors

Non-continuous domain constructors

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 13

A1 ⊆ A2 ⊆ A3 ⊆ … ― a chain of mutually different sets

B – A1 ⊇ B – A2 ⊇ B – A3⊇ … ― not a chain

A1 ⊆ A2 ⊆ A3 ⊆ … ➔ A ― a chain of mds

A1→B ⊆ A2→B ⊆ A3→B ⊆… ― a chain

(lim {Ai})→B ≠ lim {Ai→B}

A1 ⊆ A2 ⊆ A3 ⊆ … ➔ A ― a chain of mds

B→A1 ⊆ B→A2 ⊆ B→A3⊆ … ― a chain

B→(lim {Ai}) ≠ lim {B→Ai}

Total functions on

A not included

Functions "onto"

A not included

A1 ⊆ A2 ⊆ A3 ⊆ … ➔ A ― a chain of mds

A1⟼B ⊆ A2⟼B ⊆ A3⟼B ⊆… ― a chain

(lim {Ai})⟼B ≠ lim {Ai⟼B}

Partial functions

on A not included

A1 ⊆ A2 ⊆ A3 ⊆ … ➔ A ― a chain of mds

Sub.A1 ⊆ Sub.A2 ⊆ Sub.A3 ⊆ …― a chain

Sub.(lim {Ai}) ≠ lim {Sub.Ai}

Set A not

included

Domain equations

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 14

State = Identifier ⟹ Data

Instruction = State → State

Data = Number | Record

Record = Identifier ⟹ Data
A "legal" set of equations

since recursion does not

involve the noncontinuous

operator →.

State = Identifier ⟹ Data | Procedure

Procedure = State → State

An "illegal"

set of

equations

Abstract errors — error messages (1/2)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 15

In Lingua error messages are generated whenever an operation can't be

performed.

E.g. the evaluation of expression a/b should generate an error whenever:

• variables a or b have not been declared (at all),

• variables a or b have not been declared as numbers,

• the current value of b is zero,

• the value of a/b is too large in a given implementation.

dat: Data ― a domain of data

dat: DataE = Data | Error

err : Error ― a domain of errors

(a parameter of our model)

In our model errors are words, e.g.

a/0 = 'division-by-zero'

Notational convention: The syntax of programs is typeset in Courier New green

Abstract errors — error messages (2/2)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 16

op : Data1 x…x Datan → Data with computable undefinedness

ope : DataE1 x…x DataEn ⟼ DataE coincides with ope when not error

Transparency for errors:

ope.(d1,…,dn) = dk if dk the first error in (d1,…,dn)

Errors may be handled in two ways:

reactively — transparency

proactively — a restoration mechanism; e.g. in SQL

For technical simplicity

we assume transparency for most operations in our model

Propositional calculus of Mc'Carthy
(non-transparent operations)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 17

if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi

If and is transparent, then our program aborts for x = 0.

The solution of John McCarthy:

ff and-m ee = ff ― lazy evaluation left to right

or-m tt ff ee

tt tt tt tt

ff tt ff ee

ee ee ee ee

and-m tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ee ee

not-m

tt ff

ff tt

ee ee

error or undefinedness

Propositional calculus of Mc'Carthy
some properties

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 18

and-m, or-m ― associative

p and-m q ≠ q and-m p ― not commutative

p or-m (not p) ≠ ff ― never false

and-m is distributive over or-m only on the right-hand side, i.e.

p and-m (q or-m s) = (p and-m q) or-m (p and-m s)

Propositional calculus of Kleene

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 19

or-k tt ff ee

tt tt tt tt

ff tt ff ee

ee tt ee ee

and-k tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ff ee

not-k

tt ff

ff tt

ee ee

Even „more lazy” than McCarthy’s calculus

Now commutativity

p or-k q = q or-k p

p and-k q = q and-k p

hence in particular

tt or-k ee = ee or-k tt = tt

ff and-k ee = ee and-k ff = ff

If ee may be an infinite

computation Kleene's calculus

requires a simultaneous evaluation

of arguments.

Mar 8th, 2021 20A. Blikle - Denotational Engineering; Part 1 (20)

Thank you for

your attention

