A Denotational Engineering
of Programming Languages

Part 1. MetaSoft, CPO's and McCarthy's propositional calculus
(Sections 2.1 — 2.9 of the book)

Andrze) Jacek Blikle
March 81, 2021

@@@ "Denotational Engineering of Programming Languages” by Andrzej Blikle is licensed under a Creative Commons:
@ Attribution — NonCommercial — NoDerivatives.

Mar 8th, 2021

MetaSoft

A definitional metalanguage for
denotational definitions of
programming languages

Developed in
Institute of Computer Science
Polish Academy of Sciences
in the years 1970 - 1980

A. Blikle - Denotational Engineering; Part 1 (20)

MetaSoft notation — functions

a:A (@lA — a is (is not) an element of A

{a;,...,a.} — a finite set

{} — an empty set

f.a — f(a),

f.a.b.c =((f(a))(b))(c) — (Haskell) Curry's notation
fa=1fa="? — f is defined/undefined for a

(feg).a =g.(f.a) — sequential composition of functions
f=[a,/bq,...,a,/b,] — mapping: f.a; = b; and undefined otherwise
[] — empty function

[Ala=a ifa:A — identity function; where A is a set
f:A—=A — a (possibly partial) function from Ato A
fO = [A] — 0O-th iteration

fn=f-1ef — n-th iteration

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

MetaSoft notation — functions (cont.)
f:A—-B, g:C—-D
f®#g:A|C —» B|D — foverwritten by g
(fég).x =
gx=! =»gx ifg.xdefinedthen g.x
gx=7? =>1fx If g.x undefined then f.x
feg="1|g —iffNg={}

fla,/b,,...,a,/b] — foverwritten by a mapping [a,/b,,...,a,/b,]

fla,/b,,....,a/b].x =

X=a, =2 b If x = a, then, f.x = b,, and otherwise
X=a,=> b, If x = a, then, f.x = b,, and otherwise
true =>»f.x in all other cases f.x

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

MetaSoft notation: sets (domains)

{a;,...,a.}, {} — a finite set, an empty set

Sub.A, FinSub.A — families of all (all finite) subsets of A,

A|lB — union of A and B,

AxB — Cartesian product of A and B,

Ac* — all finite (nonempty) tuples (a,,...,a,); &, : A

() — empty tuple — | Cartesian
A% =A% | {()} — all finite (possibly empty) tuples on A power
A—B — all partial functions from Ato B

A— B — all total function from Ato B

A= B — all mappings (finite functions) from Ato B

Rel(A,B) ={rel | rel € Ax B} — binary relations

typical domain equations:
val : Value = Data x Type
vat : Valuation = Identifier = Value

\

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

vat — a metavariable running over Valuation

Chain-complete partially ordered sets

C:Rel(AA)={R| RS AXxA} ordering relation in A

DEF. partial order:

ac a reflexivity

facband bEcthenaCS c transitivity
facband bEathena=b weak antisymmetricity

b : B is called the least elementinB<c A if (vb':B)bC b
a : Ais called the upper bound of BSA, if (vb:B) bEa

a, Ca,CazCc ... a chain
lim(a, | i=1,2,...) limit = least upper bound (if exists)

Def. (A, E, @) is called chain-complete partially ordered set (CPO) if:
1. every chain in A has a limit,
2. @ is the least element of A

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

Continuous functions in CPO's
(A, C, D) — CPO

DEFf: A+ A is continuous if

1. ifa,Ea,E...thenfa, =fa,Cc ...,

2. ifa;Ea,C ... hasalimitthenf.a, Cf.a, C ... has a limit,
3. lim(fa,Efa,Cc...)="f[lim@, Ea,c...).

A composition of continuous functions is continuous.

Kleene's fixed-point theorem A fundament for recursive definitions of
function and domains

If f: A— A Is continuous, then the least solution of
X = f.x
exists and equals lim(f".® | n = 0,1,2,...).

DEF A set-theoretic CPO — A CPO of sets with ordering by inclusion and
the empty set { } as the least element. E.g. the Sub.A.

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

A fixed-point definition of 2"

Nat ={0,1,2,...} — natural numbers

(Nat — Nat, €,[]) — a set-theoretic CPO of partial functions on Nat
feg — continuous on both arguments

fé®g — continuous on both arguments

power : Number — Number power.n =2"
power.n =

nN=0=>1 A traditional recursive
n>0=>» 2 *power.(n-1) definition

A fixed-point definition

power = zero 4 (minus e power) e double the overwriting of disjoint

where functions is a union
zero.n = [0/1]

minus.n =n-1 forn>0
minus.0 =72
double.n =2*n

power = lim.([0/1] , [0/1, 1/2] , [0/1, 1/2, 2/4] , ...)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

A CPO of formal languages

A={a;...,a.} — an alphabet

Lan(A) ={L | L € A*} — the set of all languages over A
(Lan(A), S, {}) — CPO of formal languages over A
P, Q : Lan(A)

POQ ={p©q|p:Pandqg:Q} — concatenation
PQ ={pg|p:Pandq: Q} — (an alternative notation)
PO = {¢}

PN =PPM™D forn>0 — n-th power

P+ =PY|P?2]... — plus-power

p* =P+ | PO — star-power

pc ={(py,---,P,) | Nn=0and p, : P} — Cartesian power

All function defined above, and union, are continuous

Associativity and distributivity
(PQL=P(QL) will be written P Q L
(P|QL=(FPL)|[(@QL) will be written PL | QL

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

Equational grammars

(example)
car : Character ={a,...,z,0,...,9} polynomial equations
ide : Identifier = Character | Character © Identifier

exp : Expression = Identifier | {(} © Expression © {+} © Expression © {)}

In a compact form

car : Character ={a,..,z,0,.., 9} terminal symbols
ide : Identifier = Character™®

exp : Expression = Identifier | (Expression + Expression)

Equational (polynomial) grammars are equivalent to Chomsky's
context-free grammars and Backus-Naur grammars

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

10

A CPO of binary relations

(Rel(AA), €, {}) — CPO of binary relations

[A] ={(a, a) | a:A} — identity relations (function)
P, R: Rel(AA)

PeR={ac)|(db:B)(aPb&bRc)} — composition
RO = [A]

R"=Re R™forn>0

R*=R!|R?| ...

R*=R*| RO

All function defined above, and union, are continuous

Associativity and distributivity over union
(PRQ =P(RQ) will be written PR Q
PIR)Q=PQ)|(RQ) will be written PQ | R Q

If P, R — functions, then P e R — function

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

11

A CPO of domains

(Domain, <, {}) — the Cohn's CPO of domains

DEF (M.P. Cohn)

(1) { }, Identifier, Integer, Character, ... belong to Domain

(2) Domain is closed under all our domain operations (see below)
(2) Domain is closed under enumerable unions of sets

A|B — set-theoretic union

ANB — set-theoretic intersection continuous and
AXB — Cartesian product noncontinuous
Acn — Cartesian n-th power domain constructors
Act — Cartesian plus-iteration

Ac* — Cartesian star-iteration

FinSub. A — the set of all finite subsets

A=B — the set of all mappings including the empty mapping
A-B — set-theoretic difference red indicates non-continuity
Sub.A — the set of all subsets

A—B — the set of all functions from Ato B

A— B — the set of all total functions from Ato B

Rel.(A,B) — the set of all relations between A and B

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

12

Non-continuous domain constructors

ALCA,CA;C ... — a chain of mutually different sets
B-A,2B-A,2B-A;2... —notachain
A, €A, C A3 cC... 2A — a chain of mds Total functions on

A.—-BcA,—-BcA;—»Bc ... —achain
(lim {A})—B # Ilim {A—B}

AJCACA;C ... DA — a chain of mds
B—A, € B—»A, € B>A;C ... —achain
B—(lim {A}) # lim{B—A}

AICA,CA;Cc ... 2A — a chain of mds
A—BcA,—BCcA;—BCc ... —achain
(lim {A})—B # Ilim {A+—B}

AJCACA;C... DA — a chain of mds
Sub.A; € Sub.A, € Sub.A; € ...— achain
Sub.(im {A}) # lim {Sub.A}

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

A not included

Functions "onto"
A not included

Partial functions
on A not included

Set A not
included

13

Domain equations

Data = Number | Record A"legal" set of equations
Record = ldentifier = Data since recursion does not
State = |dentifier = Data involve the noncontinuous
Instruction = State — State operator —.
State = Identifier = Data | Procedure
Procedure = State — State o

O

An "illegal”
set of
equations

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 14

Abstract errors — error messages (1/2)

In Lingua error messages are generated whenever an operation can't be
performed.

E.g. the evaluation of expression a/b should generate an error whenever:

« variables a or b have not been declared (at all),

« variables a or b have not been declared as numbers,

« the current value of b is zero,

« the value of a/b is too large in a given implementation.

Notational convention: The syntax of programs is typeset in Courier New green

dat: Data — a domain of data
dat: DatakE = Data | Error
err: Error — a domain of errors

(a parameter of our model)
In our model errors are words, e.g.
a/0 = 'division-by-zero'

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 15

Abstract errors — error messages (2/2)

op :Data; x...xData, — Data with computable undefinedness
ope : DatakE, x...x DataE, +> DataE coincides with ope when not error

Transparency for errors:

ope.(d,,...,d) = d, if d, the first errorin (d,,...,d,)
Errors may be handled in two ways:

reactively — transparency
proactively — a restoration mechanism; e.g. in SQL

For technical simplicity
we assume transparency for most operations in our model

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20) 16

Propositional calculus of Mc'Carthy

(non-transparent operations)

if x # 0 and 1/x < 10 then x := x+1 else x := x-1 fi

If and is transparent, then our program aborts for x = 0.

The solution of John McCarthy:
ffand-m ee = ff — lazy evaluation left to right

\

error or undefinedness

or-m | tt | ff | ee and-m | tt | ff | ee not-m
tt tt tt tt tt tt | ff ee tt ff
ff tt | ff | ee ff ff | ff ff ff tt
ee |ee | ee | ee ee ee| ee | ee ee ee

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

Propositional calculus of Mc'Carthy
some properties

and-m, or-m — associative
pand-mq # qand-mp — notcommutative

p or-m (not p) # ff — never false

and-m is distributive over or-m only on the right-hand side, i.e.

p and-m (g or-m s) = (p and-m g) or-m (p and-m s)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

18

Propositional calculus of Kleene

Even ,more lazy” than McCarthy’s calculus

or-k | tt | ff | ee and-k | tt | ff | ee not-k
tt tt tt tt tt tt | ff ee tt ff
ff tt | ff | ee ff ff | ff ff ff tt
ee tt | ee | ee ee ee | ff ee ee ee

Now commutativity
por-kq =qor-kp

pand-k q =qand-kp If ee may be an infinite
computation Kleene's calculus
requires a simultaneous evaluation
of arguments.

hence in particular
ttor-k ee =eeor-ktt =tt
ff and-k ee = ee and-k ff = ff

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

Mar 8th, 2021 A. Blikle - Denotational Engineering; Part 1 (20)

